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SUMMARY

The organization of a cell emerges from the inter-
actions in protein networks. The interactome is criti-
cally dependent on the strengths of interactions and
the cellular abundances of the connected proteins,
both of which span orders of magnitude. However,
these aspects have not yet been analyzed globally.
Here, we have generated a library of HeLa cell lines
expressing 1,125 GFP-tagged proteins under near-
endogenous control, which we used as input for a
next-generation interaction survey. Using quantita-
tive proteomics, we detect specific interactions,
estimate interaction stoichiometries, and measure
cellular abundances of interacting proteins. These
three quantitative dimensions reveal that the protein
network is dominated by weak, substoichiometric in-
teractions that play a pivotal role in defining network
topology. The minority of stable complexes can be
identified by their unique stoichiometry signature.
This study provides a rich interaction dataset con-
necting thousands of proteins and introduces a
framework for quantitative network analysis.

INTRODUCTION

Proteins are central protagonists of life at the molecular level.

They interact for structural, regulatory, and catalytic purposes,

forming macromolecular structures as well as stable or transient

multi-protein complexes. Accordingly, protein interactions vary

greatly in their biophysical properties, while protein abundances

range from a few tomillions of copies per cell. The interactome is

therefore the product of two factors: binary affinities between
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protein interfaces (Rual et al., 2005; Stelzl et al., 2005; Rolland

et al., 2014) and the cellular proteome, which itself is character-

ized by subcellular localization, post-translational modifications

and protein concentrations (Hein et al., 2013; Mann et al., 2013).

Mapping the protein interactome landscape has been a long-

standing goal of modern biology and a variety of methods have

been developed to this end (Seebacher andGavin, 2011). Affinity

purification followed by mass spectrometry (AP-MS) can in prin-

ciple determine the members of protein complexes in their

cellular context in an unbiased manner (Gingras et al., 2007)

and has enabled large-scale protein interaction studies of

several model organisms, including human cells (Ewing et al.,

2007; Malovannaya et al., 2011). Nanoscale liquid chromatog-

raphy (LC) coupled to sensitive and fast mass spectrometers

has boosted interaction proteomics technology in recent years,

increasing coverage and minimizing false negative rates. It has

also enabled a paradigm shift from identification to quantification

of interacting proteins (Bantscheff et al., 2012). Quantitative ap-

proaches permit the use of mild immunoprecipitation (IP) proto-

cols and allow specific binders to stand out by their quantitative

signature even from very large backgrounds of unspecific pro-

teins (Mellacheruvu et al., 2013; Keilhauer et al., 2015). Addition-

ally, MS-based proteomics is now able to characterize entire

cellular proteomes with increasingly complete coverage (Beck

et al., 2011; Mann et al., 2013), providing abundances and

copy-number estimates of the expressed proteins. This should

now allow studying the quantitative interactome as a function

of the underlying proteome. To generate model systems that

closely recapitulate in vivo conditions, we have previously devel-

oped bacterial artificial chromosome (BAC) transgeneomics:

GFP-tagged proteins are expressed in mammalian cell lines

from BAC transgenes with near-endogenous expression pat-

terns from human or orthologous mouse loci (Poser et al.,

2008). GFP-based tags are dual-purpose in that they can be

used for both imaging and as affinity handle. Combining these
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Figure 1. Quantitative BAC-GFP Interactomics

(A) BAC recombineering workflow for generating transgenic HeLa lines.

(B) Single-step affinity-purification, single-run liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow.

(C) Schematic protein quantification matrices in interactome and proteome samples with three dimensions of quantification.

(D) Proteome coverage and abundance distribution of the bait proteins and their interactors.

See also Tables S1, S2, and S3.
cell lines with the quantitative proteomics workflow resulted in a

versatile and highly specific method that we termed quantitative

BAC-GFP interactomics (QUBIC) (Hubner et al., 2010).

Here, we applied QUBIC in a proteome-wide manner, using

1,125 bait proteins to assemble a large-scale map of the human

interactome. We characterize individual interactions in three

quantitative dimensions that address statistical significance,

interaction stoichiometry, and cellular abundances of interac-

tors. This concept provides a unique perspective on the interac-

tome, enabling the discovery and characterization of stable and

transient protein complexes, guiding their functional interpreta-

tion and shedding light on the topological architecture of the

entire network.

RESULTS

Quantitative BAC-GFP Interactomics
Collections of strains or cell lines expressing tagged proteins

are indispensable tools for many systems biology approaches

(Huh et al., 2003). Expressing GFP-tagged proteins from engi-

neered BAC transgenes maintains the endogenous promoters,

intron-exon-structures and regulatory elements, ensuring near-

endogenous expression levels and patterns (Poser et al., 2008)

(Figure S1A). We have previously used this system to study

chromosome segregation and the function of motor proteins

(Hutchins et al., 2010; Maliga et al., 2013). To map the protein in-

teractome globally, we generated a resource of 1,330 stable

BAC-GFP HeLa cell lines (Figure 1A; Table S1). Mouse BACs

are excellent surrogates for their human orthologs and offer

additional options, such as resistance to RNAi against their

endogenous counterparts, streamlining functional studies of

the tagged proteins (Kittler et al., 2005). In 615 cell lines, we

used mouse BACs with a median sequence identity of 94%

with their respective orthologs (Figure S1B). Overall, our collec-

tion encompasses 1,125 distinct bait proteins across all protein

classes (Figures S1C–S1E), some present as C- andN-terminally
tagged versions, or as mouse and human sequences (not

counted as distinct).

We performedQUBIC in three biological replicate experiments,

resulting in3,990LC-MS runs recordedonanOrbitrapmassspec-

trometer, taking about a year of netmeasuring time (Figure 1B). To

define specific interactors, we employed MaxLFQ, the label-free

quantification (LFQ) module of the MaxQuant software (Cox and

Mann, 2008; Cox et al., 2014). Bait proteins and their interactors

are characterized by quantitative co-enrichment compared to

their intensity profiles across many samples (Figures 1B and

1C), and we used generic statistical testing to determine signifi-

cantly enriched cases (Keilhauer et al., 2015). To set thresholds

for accepting a given candidate as an interactor, we developed

an entirely data-driven, false discovery rate (FDR)-controlled

approach that harnesses the absence of ‘‘negative’’ interactions

and the concomitant asymmetry of the outlier population (Figures

S1F and S1G). This approach does not rely on reference datasets

orprior knowledge for training,butnonethelessvalidates favorably

against gold standards (Figures S1I–S1K).

In addition to local co-enrichment, we found the intensity pro-

files of interacting proteins to be closely correlated globally (Sup-

plemental Experimental Procedures). Profile correlations alone

can indicate protein interactions when proteome samples are

subjected to extensive native fractionation (Havugimana et al.,

2012; Kristensen et al., 2012). Here, we use them as additional

classifiers (Keilhauer et al., 2015) and the combination of enrich-

ment FDRs and profile correlation coefficients defines the confi-

dence class of each interaction (Figure S1H).

Overall, using the information in this first dimension of proteo-

mic quantification, our analysis resulted in 28,504 unique and

statistically significant interactions involving 5,462 distinct pro-

teins (Table S2).

Interaction Stoichiometries and Protein Abundances
A second dimension of quantification can in principle be applied

to determine the stoichiometries of proteins within complexes.
Cell 163, 712–723, October 22, 2015 ª2015 Elsevier Inc. 713



A B C Figure 2. The Stoichiometry Plot

(A) Overlay of all interaction and abundance stoi-

chiometry data for all interactions.

(B) The characteristic triangular shape is a conse-

quence of the dynamic range limits in the inter-

actome (left border), in the proteome (top border)

and the stoichiometry limit imposed by the relative

cellular protein abundances (diagonal). Schematic

interaction scenarios: (1) equal cellular abundance,

stable interaction; (2) equal cellular abundance,

weak interaction; (3) stable interaction with greater

cellular abundance of the prey; and (4) reciprocal

case: quantitative recovery of a stably bound, less

abundant prey.

(C) Stoichiometry plot of interactions between proteins annotated as CORUM complex members. The area of highest density can be approximated by a circle

containing 58% of CORUM interactions.

See also Data S1.
These can be computationally extracted from label-free affinity

purification data with accuracies reaching those of methods us-

ing isotopically labeled reference standards (Wepf et al., 2009;

Smits et al., 2012). If a protein complex contained one copy of

each subunit, onemight expect them to be retrieved in equimolar

amounts after immunoprecipitation (IP). However, in practice,

measured stoichiometries between preys and baits span orders

of magnitude (Collins et al., 2013; Hauri et al., 2013). This is

because the observed stoichiometries depend on more than

the initial composition of the individual complexes in the cell.

For instance, limited kinetic and thermodynamic stability can

result in substoichiometric recovery. Proteins may also reside

in different alternative molecular assemblies with fractions of

their total cellular pools. Hence, we hypothesized that globally,

interaction stoichiometries might reflect the stability of a given

protein-protein interaction and depend on the extent that inter-

actors are engaged with each other. The cellular abundance

of an interactor can be limiting for how much is recoverable

after immunoprecipitation (IP), setting a lower bound for the

interaction stoichiometry. We therefore reasoned that cellular

copy numbers would provide a crucial third quantitative

dimension.

For each pair of interacting proteins, we first quantified their

stoichiometry in the immunoprecipitates using a sophisticated

label-free strategy for absolute protein quantification (Supple-

mental Experimental Procedures). To determine the precision

of our method, we systematically compared interaction stoichi-

ometries from experiments where the same bait proteins were

tagged on different termini, representing entirely separate exper-

iments (Figures S2A and S2E). Stoichiometries showed high cor-

relation, precision within a factor of three, and no systematic bias

for a given terminus. This confirmed that our approach robustly

delivers interaction stoichiometries in high throughput; however,

these may not always be sufficiently accurate to reliably specify

copy numbers of each subunit, even for stable complexes. We

repeated the analysis for caseswhere either themouse or human

ortholog of a protein was used as bait, demonstrating the same

level of reliability and no species bias (Figures S2B–S2D). This

highlights the extraordinary degree of conservation of protein

function in evolutionary time (Kachroo et al., 2015) and suggests

that our human-centric dataset is representative not only of the

human but other mammalian species.
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To add a third dimension of proteomic quantification, we next

performed a whole proteome quantification experiment on the

parental HeLa cell line that all our BAC-transgenic lines are

derived from, to a depth of about 9,000 proteins. To estimate

cellular protein abundances, we applied our label-free approach

and scaled the values to copies per cell using the ‘‘proteomic

ruler’’ concept (Wi�sniewski et al., 2014) (Supplemental Experi-

mental Procedures). The proteome dataset provided cellular

copy numbers for 5,305 proteins of the interactome dataset,

covering 97% of all interactors (Figure 1D). The abundances of

interacting proteins closely follow the distribution of bait abun-

dances, covering the entire dynamic range of the proteome.

This demonstrates that our BAC-based system recapitulates

the in vivo situation, enabling us to probe the interactome as a

function of the endogenous cellular proteome.

Quantifying the Interactome in Two Additional
Dimensions
Having established a set of specific interactions with the first

dimension of quantification, we next combined our second and

third dimension of quantification, namely the interaction stoichi-

ometries and relative cellular abundances of interactors. A plot of

the stoichiometry landscape for each bait protein is a powerful

tool to organize its interactome, because each region reflects a

different scenario (Figures 2A and 2B): stable, one-to-one, and

fully recovered complexes in which the partners have equal

cellular abundance appear around the origin of the plot (case 1

in Figure 2B). Superstoichiometry, the recovery of more prey

than bait, is only expected for stable complexes containing

more prey than bait copies and indeed we find few of these. If in-

teractions are weak and complexes dissociate partially during

IP, or if interactions involve only part of the bait pool, interactors

are recovered at substoichiometric levels (case 2), reflecting

lower occupancy of interaction interfaces of the bait. A vast pre-

dominance of sub- over superstoichiometry confirms our initial

hypothesis that stability and occupancy are the main determi-

nants for most interactions.

We observed many cases of stable interactors (�1:1 interac-

tion stoichiometry) that involved a more abundant prey (case

3), such as the interaction of the abundant GTP-binding protein

RAN with its guanine-nucleotide releasing factor RCC1 or that

of a-tubulin with the NEK9 kinase (see Table S2). The reciprocal
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Figure 3. The Core-Complex Network

(A) Sub-networks of interactions matching the CORUM-characteristic core stoichiometry signature. Red edges are known interactions annotated in UniProt or

CORUM.

(B) Graphical definition of the core stoichiometry signature. Center: �0.5, 0; radius: 1 (log10 units).

(C) Quantification of the CORUM overlap. A total of 125 isolated networks remain unannotated; 70 networks are annotated with 548 partially redundant CORUM

terms; 286 terms assigned to our baits were not shared by any interactor.

(D) Size distribution of annotated versus unannotated networks.

See also Figure S3.
interaction stoichiometry readouts are necessarily smaller than

one, because any higher abundant bait can maximally recover

the entire pool of its lower abundant prey (case 4). (Note

that this would be the default case for overexpressed baits.)

We retrieved substoichiometric interactions over an estimated

five orders of magnitude; for example, NEK9 was recovered at

6 3 10�6 3 the amount of a-tubulin. The proteome-interactome

relationship requires that interactors can only be recovered to

the extent permitted by their abundance and translates into a

diagonal cut-off in the plot, which results in a characteristic trian-

gular shape of the ‘‘cloud’’ of interactions (Figure 2A).

Approximately 10% of our interactions connected members

of well-characterized complexes annotated in the CORUM

database (Ruepp et al., 2010). They populate a confined area

characterized by a signature of balanced stoichiometries (case

1 in Figure 2B). Thus the prototypical case of a stable protein

complex as typically described in the literature mostly consists

of proteins of equal cellular abundances that are all constitutively

bound to each other.

Extrapolating from the signature of known complexes, we

reasoned that deduction of similar complexes should be

possible solely from the stoichiometry signature of individual

baits as opposed to analysis of the entire network (Collins

et al., 2007; Hart et al., 2007). We filtered our data for those

featuring the core stoichiometry signature (Figure 3B), yielding
a larger cluster connecting several molecular assemblies such

as major cytoskeletal proteins, the nuclear pore complex and

the ribosome as well as 194 isolated putative core complexes

(Figure 3A). These recapitulated the majority of CORUM-anno-

tated complexes that involve our bait proteins (Figure 3C).

We confirmed the known tendency of large complexes to be

well annotated (Havugimana et al., 2012), while smaller assem-

blies lacked previous description (Figure 3D). The largest of

our 125 networks with no database annotation at the time

is the recently discovered COMMD/CCDC22/CCDC93 (CCC)

complex (Phillips-Krawczak et al., 2015).

The stoichiometry plot offers a unique opportunity for com-

paring the overlap of our dataset with published data (Figures

S3A–S3C). For instance, the intersection with a recent co-

fractionation interactome study (Havugimana et al., 2012) closely

recapitulated the core-complex signature, with 26% of our core-

interactions overlapping with that study. This indicates that the

co-fractionation methodology offers an attractive short-cut to

finding stable, obligate core complexes. Conversely, the overlap

with iRefWeb, a portal of consolidated protein interactions from

different sources (Turner et al., 2010), reached much further into

the substoichiometric region, beyond stable complexes, but still

only covered 16% of our dataset. Finally, the overlap with recent

large-scale yeast-two-hybrid data (Rolland et al., 2014) was low

(0.4%) and mostly limited to cases characterized by quantitative
Cell 163, 712–723, October 22, 2015 ª2015 Elsevier Inc. 715



prey recovery to the extent permitted by cellular abundance.

Moreover, the stoichiometry plot quantitatively confirmed the

intuitive notion that high-stoichiometry interactions are easier

to detect as they are enriched in the 1% FDR compared to the

5% FDR cohort (Figures S3D and S3E). This is also reflected in

the overlap of gene ontology (GO) annotations in pairs of inter-

acting proteins (Figure S3F).

Interactions Explain Phenotypes and Genetic
Associations
Our dataset provides an extensive resource that can be mined

for new or poorly characterized protein interactions. For

instance, among the interactors of SUCO, one other protein,

TAPT1, stood out by its core stoichiometry signature, suggesting

a novel, stable complex consisting of these two low abundant in-

tegral membrane proteins of the ER (Figures 4A, 4B, and S4A–

S4C). Mutants of their murine orthologs exhibit severe defects

during skeletal development: Truncation of TAPT1 causes trans-

formations in the axial skeleton and perinatal lethality (Howell

et al., 2007), whereas loss of the SUN domain-containing ossifi-

cation factor SUCO (also known as OPT) impairs postnatal bone

formation, causing fractures and neonatal death (Sohaskey

et al., 2010). The latter study linked the phenotype to impaired

rough ER expansion and consequent failure of osteoblasts to

secrete collagen required for bone formation. Knockdown of hu-

man SUCO increased the cells’ resistance against ricin, whose

toxicity depends on endocytosis and retrograde trafficking to

the ER (Bassik et al., 2013). Similarly, the yeast ortholog of

TAPT1, EMP65 (YER140W), is involved in protein folding in the

ER and shows buffering genetic and physical interactions with

the SUN domain protein SLP1 (YOR154W) (Jonikas et al.,

2009; Friederichs et al., 2012). We used our interaction method-

ology on GFP-tagged strains to confirm this complex (Figures

S4D and S4E). Similarly, we validated the reciprocal interaction

in the mammalian system using TAPT1 as bait (Figure S4B).

Together, our findings establish TAPT1–SUCO as the higher

eukaryote ortholog of SLP1-EMP65: a low abundant ER mem-

brane complex that is required for normal skeletal development.

Going beyond stable complexes, we discovered an interaction

between the anaphase promoting complex or cyclosome (APC/

C) and the uncharacterized protein KIAA1430. The stoichiometry

plot indicated that KIAA1430 is of lower cellular abundance and

is not an obligate member of the APC/C, as the partners were

recovered substoichiometrically at �1% of the respective baits

in reciprocal experiments (Figures 4C and 4D).

To independently test whether KIAA1430 was indeed a tran-

sient interactor of the APC/C, we performed a purify-after-mixing

(PAM)-SILAC experiment (Wang and Huang, 2008) (Figures 4E

and 4F; Supplemental Experimental Procedures). We mixed

differentially SILAC-labeled lysates from tagged and control

cell lines before the affinity step. Subsequently measured SILAC

ratios are indicative of the stability of the interaction, because

transient interactors exchange dynamically with unbound coun-

terparts, shifting their ratio toward unity, whereas stable interac-

tors maintain their label ratio. Our results confirmed that only

known subunits of the APC/C are stably bound to the core sub-

unit CDC23. Consistently, only some of them were recovered

when assayed for binding to KIAA1430 and with ratios indicating
716 Cell 163, 712–723, October 22, 2015 ª2015 Elsevier Inc.
a high degree of dynamic exchange. Next, we tested whether

KIAA1430 is a substrate of the APC/C by monitoring its levels

during mitosis and early G1 phase. Unlike known substrates,

KIAA1430 levels remained stable (Figure S4F).

In interphase, a fraction of GFP-tagged KIAA1430 localized to

the centrosomes, in particular the centrioles, and was largely

excluded from the nucleus (Figures 4G, 4H, S4G, and S4H), while

the APC/C is known to be predominantly nuclear (Kraft et al.,

2003; Hubner et al., 2010). Duringmitosis, after nuclear envelope

breakdown (NEBD), APC/C accumulates on mitotic spindles,

centromeres, and centrosomes (Kraft et al., 2003; Acquaviva

et al., 2004), reflecting a partially common localization with

KIAA1430. Consistently, we confirmed the APC/C–KIAA1430

interaction in mitotically arrested, but not in interphase cells (Fig-

ure 4I). To functionally investigate the mitotic interaction, we

used time-lapse microscopy to determine the time cells require

from NEBD to the onset of anaphase as a function of APC/C ac-

tivity. KIAA1430 knockdown resulted in a mild delay that was

sensitive to reversine, a small molecule inhibitor of the mitotic

checkpoint kinase MPS1 (Figures 4J and 4K) (Santaguida

et al., 2010). These findings suggest that the depletion of

KIAA1430 activates the spindle assembly checkpoint, thereby

postponing the activation of the APC/C. Recent reports identi-

fied the ciliary protein hemingway as the Drosophila ortholog of

KIAA1430 (Soulavie et al., 2014) and implicated the APC/C in

regulating ciliary length and polarity (Ganner et al., 2009; Wang

et al., 2014). Given that centrioles are common features of cilia

and centrosomes, our data suggest that in human cells,

KIAA1430 recruits a sub-fraction of the APC/C to the centro-

some to facilitate mitotic progression.

These examples illustrate how the combination of three quan-

titative dimensions offers a unique view on the interactions of

individual proteins that extends beyond their identification and

facilitates their functional investigation.

We have compiled this information into an easily usable

resource, provided as Data S1 and available via the IntAct

database. For each of the 1,330 tagged cell lines, we present a

concise, one-page summary outlining the abundance of the

bait protein, the co-enrichment and confidence classification of

candidate interactors along with the stoichiometry plot and the

predictions of the core complexes. A reading guide is presented

in Figure S5.

The Relevance of Substoichiometric Interactions
Our study revealed that interactions within obligate complexes

constitute only a small minority of the interactome. We reasoned

that the majority of remaining interactions should be of a func-

tionally and conceptually different nature, as indicated by our

example of the KIAA1430-APC/C interaction.

To investigate the interplay of the different types of interac-

tions, we interrogated the chaperonin TRiC (also called CCT),

which is known to act on a large number of client proteins (Hartl

et al., 2011). Its core machinery of eight subunits was clearly

identified as an abundant obligate complex (Figure 5A) and rep-

resents a prominent hub in our interactome dataset. Virtually all

interactors co-enrichedwith tagged TRiC core subunits were co-

chaperones, regulatory proteins of the phosducin family or pro-

teins containing known substrate motifs (Yam et al., 2008) (Table
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Figure 4. The TAPT1-SUCO Complex and the KIAA1430-APC/C Interaction

(A) Stoichiometry plot indicates stable TAPT1-SUCO complex.

(B) Immunofluorescence of TAPT1 and SUCO in HeLa shows ER localizations.

(C) Stoichiometry plot of APC/C interactors (bait: CDC23). Known core complex members (blue) and KIAA1430 (red) as novel substoichiometric

interactor.

(D) Stoichiometry plot of KIAA1430 (red) interactors shows APC/C subunits (blue) as substoichiometric interactors.

(E) PAM-SILAC ratios plotted as medians of forward triplicate against label-swapped reverse triplicate (bait: CDC23).

(F) PAM-SILAC data using KIAA1430 as bait. Baits and stable interactors are recovered at ratios corresponding to label incorporation levels. Ratios of transient

interactors are shifted toward 1:1.

(G) Maximum intensity projections of living interphase and mitotic cells expressing KIAA1430-LAP and histone 3.1-iRFP indicate that KIAA1430 localizes to

centrioles.

(H) Co-localization of KIAA1430 with centrosomal marker g-tubulin and the centriolar protein CEP135.

(I) Western blot analysis of ANAPC3 IPs and corresponding flow-throughs (FT) from interphase and mitotically arrested cells expressing KIAA1430-LAP.

(legend continued on next page)

Cell 163, 712–723, October 22, 2015 ª2015 Elsevier Inc. 717
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Figure 5. The TRiC Interactome Is Defined by Substoichiometric Links

(A) Stoichiometry plot of CCT3 interactors, representative of TRiC core subunits.

(B) PAM-SILAC results from the same bait protein.

(C) Reciprocal stoichiometry plot of averaged positions of the TRiC subunits from all bait pull-downs enriching at least three TRiC subunits. Symbol size indicates

profile correlation. See also Tables S4 and S5.

(D) Systematic comparison of interaction stoichiometries and PAM-SILAC ratios for all interactions observed using CDC23, KIAA1430, and CCT3 as baits.
S4). Characteristic of all was a lower cellular abundance than

TRiC (except for some cytoskeletal proteins) and substoichio-

metric recovery, classifying these interactors as distinct from

the core subunits. When we performed a PAM-SILAC experi-

ment to test for stable versus transient binding, the core

complex composition that we had already established by the

stoichiometry plot was confirmed, as these were all found

to be stable binders (Figure 5B). Other interactors were tran-

sient, as their SILAC ratios indicated full dynamic exchange.

Notable exceptions were some regulatory proteins and abun-

dant cytoskeletal substrates, whose ratios lay between stable

and fully dynamic binders. We consistently found the unchar-

acterized protein FAM203A/B as a substoichiometric inter-

actor with intermediate dynamic exchange behavior. Its ortholog

in Caenorhabditis elegans shows a cytoskeletal knockdown

phenotype (Fievet et al., 2013). All of this was reminiscent of

phosducin proteins, which TRiC requires to fold actin and tubulin

(Hayes et al., 2011) and we therefore speculate that FAM203A/B

might have a similar function.

In reciprocal interaction experiments, TRiC core complex

members were co-enriched by �5% of all bait proteins (Fig-

ure 5C; Table S5). This is in line with estimates of TRiC being

involved in folding of 5%–10% of the proteome (Hartl et al.,

2011). However, only some of these baits were also found in

the reciprocal TRiC IPs. This asymmetry can be explained with

knowledge of the underlying proteome: At 1.3 million copies of

the hexadecameric complex, TRiC is much more abundant

than most substrates, of which only a fraction will be in the pro-

cess of folding at any given time (Table S3). Consequently, only a

minute fraction of the TRiC pool will be acting on each substrate
(J) Western analyses showing the extent of KIAA1430 depletion before and after

(K) Time KIAA1430-depleted cells require to proceed from NEBD to anaphase, co

200 each). Red lines, mean. Significance according to two-tailed Mann-Whitney

See also Figure S4.
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and its recovery will be ‘‘diluted’’ to substoichiometric levels. In

the reciprocal case, however, TRiC occupies a significant frac-

tion of the client protein population—the fraction in the state of

folding—rendering the interaction more readily detectable within

the dynamic range (Figure 5C).

The stoichiometry of TRiC recovery in the substrate IPs ranges

from less than 10�3 to above 10�1 (Figure 5B). With TRiC sub-

strates comprising 5%–10% of all protein molecules (a HeLa

cell contains an estimated at 63 109 proteinmolecules), our stoi-

chiometry data imply that on average 0.2%–0.4% of them are

bound to the chaperone at any time. While substoichiometry

may be thought to be of lower biological relevance, these inter-

actions fulfil important functions as they connect very diverse

set of protein classes. Moreover, our data also illustrate how

the proteome-interactome relationship balances the amount of

TRiC with the cumulative amount of its substrates.

Extrapolating from our APC/C, KIAA1430, and TRiC case

studies, we investigated whether the different stoichiometric

classifications of interactions carry over to other characteristics:

first, we systematically compared interaction stoichiometries

with dynamic exchange data for all interactions for which both

orthogonal pieces of information were available (Figure 5D).

There was almost perfect congruence of stoichiometric interac-

tors with kinetically stably bound proteins and a surprisingly

good overall correlation of substoichiometric recovery and the

extent of dynamic exchange. This indicates that interaction stoi-

chiometries are globally predictive of the biophysical stability of

an interaction. Next, we investigated whether interaction stoichi-

ometry is indicative of co-expression across tissues or cell types.

We extracted protein abundance correlation profiles across
the time-lapse analyses presented in (K).

mpared to control cells (n = 300 each); 0.5 mM reversine rescues the delay (n =

test. Scale bars, 10 mM.
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Figure 6. Strong and Weak Interactions Have Different Global Properties

(A) Sub-network of complexes surrounding RNA polymerases I/II/III. Proteins are colored by complex, edges by profile correlation, edge widths represent

interaction stoichiometries.

(B) Effect of sequential removal of substoichiometric interactions on network sizes. Indicated are points where edge removal results in two fragmented sub-

networks.

(C) Global network effect of random or targeted removal of interactions on the total number of isolated sub-networks.

(D) Effect on the number of proteins present in the largest entirely connected sub-network.

(E) Effect on the fraction of total connected proteins that are part of this largest sub-network.

See also Figure S6.
many tissues from a recent human proteome draft dataset

(Kim et al., 2014). While co-expression coefficients scattered

widely, there was still a notable relationship with interaction

stoichiometry, with high-stoichiometry interactors more likely

to be coherently expressed (Figure S6A). This is in agreement

with earlier findings in yeast showing that members of stable

complexes are enriched in co-regulated modules (Simonis

et al., 2006). Conversely, substoichiometric interactions involve

proteins that are not necessarily tightly co-regulated.

Finally, we tested whether interaction stoichiometry is predic-

tive of the role of an interaction in network topology.We analyzed

a sub-network of interactors surrounding RNA polymerases I, II,

and III, recapitulating shared subunits and interactions with other

complexes, such as general transcription factor complexes,

the negative elongation factor (NELF) complex, the mediator

complex, and the polymerase-associated factor (PAF) complex

(Figure 6A). Sequential in silico removal of the most substoichio-

metric interactions from the network leads to fragmentation

events, in which the individual complexes gradually lose their in-

terconnections and emerge as individual modules (Figure 6B).

Finally, the three polymerases remain internally connected via

their shared subunits. Removing interactions in the reverse order

does not lead to any network fragmentation, but rather results in

roughly linear shrinkage of the network (Figure S6A).
Taking this approach to a global level, we probed the response

of our entire network to the removal of edges according to their

stoichiometry characteristics. Seminal studies on the topology of

networks have shown that scale-free networks are resilient to

random removal of edges, but sensitive to targeted attacks (Al-

bert et al., 2000). Specifically, analysis of the network structure

identifies the topologically most critical edges, removal of which

leads to rapid network fragmentation.

In our case, we targeted edges for removal solely by their

‘‘local’’ interaction stoichiometry readout, agnostic to their global

network roles. We removed edges sequentially, starting at either

the lowest or highest interaction stoichiometry, comparing this

with random removal of edges.

This revealed vastly different network responses (Figure 6C).

The most substoichiometric interactions turned out to be most

critical for network topology: Their preferential removal led to a

rapid increase of the number of isolated network fragments,

whereas removing the strongest 50% of edges hardly resulted

in any network fragmentation (Figure 6C). The largest connected

component, which causes the typical ‘‘hairball’’ appearance of

large-scale networks, shrunk about linearly with removal of

weak interactions (Figure 6D) and also left more proteins entirely

unconnected (Figure S6A). Conversely, preferential removal of

edges from the other end of the stoichiometry scale led to a
Cell 163, 712–723, October 22, 2015 ª2015 Elsevier Inc. 719



network response that increased its small-world characteristics:

the largest network encompasses the vast majority of connected

proteins (Figure 6E), fewer proteins are left without connections

(Figure S6B) and isolated network fragments are smaller (Fig-

ure S6C). Similar patterns of network response were observed

in a study analyzing mobile phone communication networks by

removing the strongest versus the weakest interactions (Onnela

et al., 2007). In analogy to that study, and based on our findings

of the relationship between interaction stoichiometries and ki-

netic stabilities (Figure 5D), we propose a strong/weak terminol-

ogy for interaction stoichiometries and term interactions with

near-stoichiometric recovery of the prey ‘‘strong’’ and substoi-

chiometric interactors ‘‘weak.’’

Together, our analyses show that interaction stoichiometries,

which are local properties derived from single interaction exper-

iments, predict the global behavior of the proteins involved:

strong interactions are indicative of proteins that are co-regu-

lated across cell types. In the network, they form modules of

high interconnectivity, rendering the network topologically resil-

ient to their removal. Weak interactions, on the other hand, domi-

nate the network both in numbers and by their topologically

critical role as long-range interactions between more diverse

sets of proteins. As a consequence, interaction networks can

be fragmented into individual, defined modules, by identifying

and removing weak links. In summary, availability of interaction

stoichiometries on a global scale effectively allows us to

‘‘comb’’ the interactome hairball, to identify modules, and visu-

alize their interconnectedness.

DISCUSSION

Here, we have introduced a novel concept of interactome anal-

ysis. Using an efficient, low-stringent IP protocol, accurate

label-free quantification of both the IPs and the complete prote-

ome, we extracted three quantitative dimensions, all of which

proved critical for characterizing protein interactions. While the

first dimension identifies statistically significant interactions,

the second and third dimension define their stoichiometric

contexts. Earlier large-scale studies did not include or interpret

these additional dimensions, in part because of the challenges

involved in extracting accurate quantitative values. Moreover,

past studies often employed overexpression of bait proteins,

precluding meaningful stoichiometry readout (Gibson et al.,

2013), and near-complete proteome coverage was also often

not attainable.

Finding stable protein complexes is usually a major goal

of interactomics studies. We showed that obligate protein

complexes feature a unique signature of balanced stoichiome-

tries—an infrequent occurrence among the multitude of inter-

actions. Such a signature led us to discover the TAPT1-SUCO

complex in the ER membrane. This complex ties together a

body of available evidence, including knockout phenotypes of

both TAPT1 and SUCO and genetic interactions of their yeast or-

thologs. As a representative of the majority of weaker, non-obli-

gate interactions, we characterized the binding of KIAA1430

to the APC/C, suggesting that low interaction stoichiometries

are the result of an interaction that is limited to centrioles in

mitotic cells and biophysically weaker than interactions between
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APC/C core members. Furthermore, our stoichiometry-based

classification subdivided the interactome of the TRiC chaperonin

into obligate core complex subunits, regulatory interactors, and

a large number of substrates. We found that lack of reciprocal

verification can be indicative of an inherently asymmetric nature

of biologically relevant interactions, particularly outside obligate

core complexes. This example also illustrates how the observed

interactome is shaped by protein abundances and, conversely,

implies overall regulation of protein abundances by protein inter-

actions. Therefore, the interactome always has to be interpreted

as a function of the underlying proteome.

We have shown that interaction stoichiometries generally

correlate with the biophysical stability of an interaction. Weak in-

teractions have frequently gone undetected in interactome

studies and may be thought to be less important; nevertheless

they are crucial features of networks in general and social net-

works in particular (Granovetter, 1973; Csermely, 2006). Our

studydirectly andquantitatively demonstrates thepredominance

of weak interactions in the protein interactome. MS-based

methods cover more than four orders of magnitude of interaction

stoichiometry (Collins et al., 2013), and our low-stringency

biochemicalworkflow ideally harnesses this sensitivity.However,

substoichiometric interactions involving low abundance preys

can still be challenging to detect (Figures S3D and S3E). There-

fore, the prevalence of weak interactions is likely to be even

more pronounced and their relevance vastly underappreciated.

Previous studies typically counted all interactions as equal,

once they had been accepted based on their statistical parame-

ters or scores. Therefore, the roles of individual interactions had

to be predicted from prior knowledge or from global network

properties. Highly connected proteins were described as inter-

action hubs, regions of high clustering coefficients with many

shared pathway annotations were characterized as complexes

(Collins et al., 2007; Hart et al., 2007), and weak interactions

were inferred from weaker connectivity patterns (Malovannaya

et al., 2011). However, limited coverage of the interactome is a

confounding factor for such strategies.

In contrast, we here have shown directly that local stoichiom-

etry data reflect global network topological properties of interac-

tions, setting the stage for quantitative network analysis from the

ground up.

Substoichiometric interactions form the ‘‘glue’’ that holds the

cellular network together—as shown specifically for the RNA po-

lymerase network and globally for the entire network—and are

hence critical for network structure. This property, which may

seem counterintuitive at first, prompted us to propose interac-

tion stoichiometry as a measure of interaction strength. Of

note, a range of underlying mechanisms can cause a weak inter-

action according to this terminology, for instance low biophysical

affinity, high kinetic exchange rates, limited spatiotemporal over-

lap of interactors, or indirect interactions that are bridged via

other biomolecules, all of whichmay result in a substoichiometric

readout. If such weak links are removed from the network, it col-

lapses into defined modules that are tightly interconnected by

the remaining strong links. Translated into biological terms, sta-

ble complexes would remain in isolation, but without weak links,

they would not be able to connect to each other or to transient,

dynamic regulators.



Amajor contribution of this study lies in the characterization of

the interactomes surrounding more than 1,100 different baits,

which together cover a large part of the expressed proteome

with more than 28,000 interactions. We present our results in

an accessible format that can be easily mined and interpreted

by non-specialists. Our resource of mammalian cell lines ex-

pressing GFP-tagged proteins under endogenous control can

be employed for other studies (e.g., focusing on subcellular local-

ization or functional characterization of individual proteins). The

interaction data validate these cell lines for such uses and the

use of mouse orthologs as surrogates. They also imply remark-

ably similar protein interactomes between human and mouse.

We approach saturationwith respect to the number of proteins

that can be covered (Figure S6D), but observe only part of the

entire interactome directly, which our data predicts to encom-

pass between 80,000 and 180,000 detectable interactions in

HeLa (Figure S6E). Our additional quantitative dimensions may

prove helpful for increasing interactome coverage in silico, for

example, by selective matrix expansion (Seebacher and Gavin,

2011). Given its usefulness in interpreting interaction data, the

stoichiometry readout developed here can become a general

basis for future interactome studies and for the analysis of inter-

actome dynamics, which will manifest foremost as quantitative

alteration of occupancies rather than qualitative gain or loss of

interactors.

EXPERIMENTAL PROCEDURES

Cell Culture

HeLa Kyoto cell lines expressing N- or C-terminally tagged proteins from

BAC transgenes were generated, cultured, and imaged as previously

described (Poser et al., 2008). Tags are based on the ‘‘localization and affinity

purification’’ (LAP) tag, consisting of GFP and a functionalized linker. All BAC

cell lines and tag sequences are listed in Table S1 along with proteome and

interactome metadata on the bait proteins. Cells were grown to near-conflu-

ency on two 15-cm cell culture dishes per interaction experiment, detached

with Accutase, and snap frozen. Three replicates were harvested in at least

two different passages.

Affinity Purification and Mass Spectrometry

Cell pellets were lysed and subjected to affinity purification on a robotic sys-

tem, followed by single-shot mass spectrometric analysis on an Orbitrap in-

strument (Hubner et al., 2010). We processed triplicates separately on different

days and carried out MS-analyses in randomized order over the course of

weeks to months.

Whole Proteome Measurements

HeLa cells were lysed in guanidinium chloride lysis buffer and digested

sequentially with LysC and trypsin as described (Kulak et al., 2014). Peptides

were desalted on stacked C18 reverse phase (Waters Sep-Pak) and strong

cation exchange cartridges and eluted using 70% acetonitrile. Pooled eluates

were separated into six fractions on strong anion exchange (SAX) StageTips

(Wi�sniewski et al., 2010). MS measurements were performed in three repli-

cates on a quadrupole Orbitrap mass spectrometer (Kulak et al., 2014).

Data Processing

Raw files were processed with MaxQuant (Cox and Mann, 2008) (version

1.3.9.10) in several sets, each containing �600 randomly assigned AP-MS

runs and the HeLa proteome fractions. Tandem mass spectrometry (MS/

MS) spectra were searched against a modified version of the November

2012 release of the UniProt complete human proteome sequence database.

For each bait protein expressed from a mouse BAC locus, the human

sequence in the fasta file was concatenated with the mouse sequence (unless
identical). Human identifiers were used for mapping purposes. We used

MaxLFQ, MaxQuant’s label-free quantification (LFQ) algorithm to calculate

protein intensity profiles across samples (Cox et al., 2014). We required one

ratio count for each pairwise comparison step and activated the FastLFQ

setting with twominimum and two average comparisons to enable the normal-

ization of large datasets in manageable computing time.

Detection of Protein Interactions

Protein identifications were filtered, removing hits to the reverse decoy data-

base as well as proteins only identified by modified peptides. We required

that each protein be quantified in all replicates from the AP-MS samples of

at least one cell line. Protein LFQ intensities were logarithmized and missing

values imputed by values simulating noise around the detection limit. For

each protein, a non-parametric method was used to select a subset of sam-

ples that provide a distribution of background intensities for this protein (Sup-

plemental Experimental Procedures). This subset was used first to normalize

all protein intensities to represent relative enrichment and then to serve as

the control group for a two-tailedWelch’s t test. Specific outliers in the volcano

plots of logarithmized p values against enrichments were determined by an

approach making use of the asymmetry in the outlier population (Figures

S1E and S1F). We used two cut-offs of different stringencies, representing

1% and 5% of enrichment false discovery rate (FDR), respectively. Correlation

coefficients between the intensity profiles of interacting proteins were calcu-

lated as additional quality parameters (Keilhauer et al., 2015). Enrichment

FDR (classes A–C) and profile correlation (modifier + or –) define the confi-

dence class of an interaction (Figure S1G).

Interaction Stoichiometries and Cellular Copy Numbers

Estimating interaction stoichiometries requires the comparison of the amounts

of different proteins relative to each other in one IP.We first subtracted theme-

dian intensity across all samples to account for background binding. We then

divided LFQ intensities by the number of theoretically observable peptides for

this protein (Schwanhäusser et al., 2011). Finally, we expressed stoichiome-

tries relative to the bait protein. Cellular copy numbers and abundances

were calculated using a similar approach (Wi�sniewski et al., 2014) on the whole

proteome data and brought to absolute scale by normalization to a total pro-

tein amount of 200 pg in a cell volume of 1 pl for a HeLa cell.

Network Analyses

Network analyses were performed based on the data listed in Table S2. For the

purpose of counting unique interactions and for the histogram of the numbers

of interactors, we regarded interactions as non-directional, flattened multiple

protein groupsmapping to the same gene name and to themost abundant iso-

form and considered interactions found multiple times only once. For network

perturbation analyses, we selected all non-self-interactions of confidence clas-

ses A+, A, and B+ and assembled them into graphs. We then removed edges

sequentially according to their interaction stoichiometry readout. Prey-bait

combinations discovered multiple times were treated as separate edges.

Once a protein had lost all its edges, it was removed. As control, we deleted

edges randomly and represented the median of 100 random repetitions and

represent the scatter as the first or third quartile ±1.5 interquartile ranges.
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Figure S1. Properties of the Cell Line Resource and Statistical Methods, Related to Figure 1

(A) Representative western blot panel of parental HeLa line (left lanes) compared to BAC-GFP lines (right lanes), probed with antibodies against the individual bait

proteins, and against tubulin as loading control. The GFP-tagged proteins, which are absent in the parental line (marked with asterisks), are expressed around or

below the levels of their untagged endogenous counterparts, migrating at �30kDa lower molecular mass.

(B) Amino acid sequence identities for BAC-GFP lines expressing tagged proteins from themouse locus.Median sequence identity betweenmouse and human is

94%, and 90% of all mouse BAC lines show sequence identities greater 75%.

(C–E) Test for biases of the selection of baits as well as interacting and non-interacting proteins compared to the HeLa proteome by Gene Ontology (GO) Slim

annotations. We calculated the percentages of all annotations that apply to > 1% of all proteins. The red solid line indicates no bias. Dashed lines indicate 2-fold

over- or underrepresentation. (C) The selection of bait proteins shows a slight enrichment of annotated, well-studied proteins. Metabolic enzymes and mito-

chondrial and extracellular proteins are slightly underrepresented, whereas known complex members or proteins involved in processes we studied earlier

(Hutchins et al., 2010;Maliga et al., 2013) are slightly overrepresented as baits. Membrane proteins are represented according to their fraction in the proteome. (D)

Interacting proteins show no biases beyond those of the bait selection and no bias of more than 2-fold. (E) Comparison of annotations of proteins found in the

interactome versus never found as interactors showed similar trends. Moreover, it revealed an overrepresentation of nuclear proteins and the term ‘‘organelle

organization’’ (which includes cytoskeletal proteins), highlighting the prevalence of protein interactions in these compartments.

(F) ‘Hawaii’ plot: overlay of all volcano plots of protein enrichments in specific over control IPs plotted against corresponding p values. Two cut-off lines were

placed graphically according to the given formula, defining confidence classes A and B. Confidence class C is defined by enrichment > 2 SDwithout crossing the

threshold for classes A or B.

(G) Definition of the cut-off curve parameters x0 (minimum enrichment) and c (curvature). The point cloud is largely symmetric to the y axis, while meaningful

outliers are only expected on the right side (enrichment), but not on the left side (depletion). Any axially symmetric cut-off curve will result in a number of left-sided

outliers (false hits) and right-sided outliers (potentially true hits). Conceptually related to the target-decoy approach for peptide and protein identification, the

fraction of the left-sided outliers to the total number of outliers serves as an FDR estimate. For a given FDR (shaded areas), a combination of x0 and c can be

selected that maximizes the number of right-sided outliers (red lines). Our cut-offs of 1% and 5% FDR are indicated by dashed lines.

(H) We combined the enrichment FDR with protein profile correlation coefficients across IPs (Keilhauer et al., 2015) to define confidence classes. Classes C and

C+ represent cases that did not cross the FDR threshold, but showed enrichments > 2-fold and correlation coefficients > 0.4 and 0.5, respectively. Numbers in

brackets represent the numbers of hits for a given confidence class. Note that the number of unique interactions is lower as bait proteins also represent hits and

some interactions may be found several times or involving several isoforms.

(I–K) Precision recall curves. For all combinations of the threshold parameters x0 and c, we calculated precision as estimated by our FDR approach, and recall of

interactions in reference datasets, resulting in a precision-recall area (upper panels). The final thresholds of 1% and 5% FDR, respectively (corresponding to 99%

and 95% precision) are marked with dashed lines. The lower panels show the total numbers of called interactions, which increases dramatically at high recall. (I)

Recall of CORUM-annotated pairs was 49% and 56%, respectively, with most remaining ones clearly behaving as background binders. (J) Recall of CORUM-

annotated pairs showing a core stoichiometry signature (see Figure 3B) was substantially higher at 83% and 92%. (K) Recall of interactions with high-confidence

reciprocal evidence (< 1% FDR) was 65% and 78%, respectively. All reference datasets show that thresholds are placed as optimal trade-offs in precision-recall

space. The reciprocal reference dataset features a more pronounced gain in recall at 5% FDR, emphasizing the benefits of a lower stringent threshold for

identifying interactions outside of stable complexes.
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Figure S2. Reproducibility of Stoichiometry Values, Related to Figure 2

(A) Correlation of interaction stoichiometry values derived from cell lines using human and mouse ortholog bait sequences (n = 103).

(B) Correlation of interaction stoichiometry values derived from cell lines using N- and C-terminal tags on the same bait sequence (n = 50).

(C) No systematic biases are apparent between human/mouse and N/C-terminal tags and precision of stoichiometries is within a factor of three.

(D) 50 representative examples for mouse versus human.

(E) 40 representative examples for N- versus C-terminal tag.
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Figure S3. Overlap with Published Datasets, Related to Figure 3

(A) Overlap of our data with published interaction data obtained by protein correlation profiling (Havugimana et al., 2012).

(B) Overlap with relevant interactions in iRefWeb (human; physical; experimental; pairwise or multi-subunit interactions).

(C) Overlap with the ‘‘HI-II-14’’ Y2H dataset (Rolland et al., 2014). Red contour lines separate areas in steps of 1.5-fold increased point density.

(D) Stoichiometry plot of all interactions with FDRs < 1%.

(E) Stoichiometry plot of all interactions with FDRs between 1 and 5%.

(F) Overlap of GO-annotations between pairs of well-annotated proteins (> 3 annotated terms each).
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Figure S4. The TAPT1-SUCO Complex and the KIAA1430-APC/C Interaction, Related to Figure 4

(A) Volcano plot of SUCO interactors.

(B) Volcano plot of TAPT1 interactors, providing reciprocal confirmation of the TAPT1-SUCO interaction.

(C) Cellular abundance plot showing copy numbers of TAPT1 and SUCO in the HeLa proteome.

(D) SLP1-GFP pull-down using a strain from the S. cerevisiae GFP library (Huh et al., 2003).

(E) EMP65-GFP pull-down. (C) Reciprocal confirmation of the TAPT1-SUCO interaction in HeLa. In all plots, bait proteins are marked in red and relevant in-

teractors in blue.

(F) KIAA1430-LAP fluorescent signal as a function of time before/after nuclear envelope breakdown (NEBD) shows no degradation during mitosis and early G1

phase, indicating that KIAA1430 is not an APC/C substrate.

(G and H) Colocalization of KIAA1430-LAP with the centrosomal marker protein g-tubulin and the centriolar protein CEP135 in interphase and metaphase. Scale

bars, 10 mM.
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Figure S5. Reading Guide for Data S1, Related to Figure 5

(A) Cell line metadata.

(B) Volcano plot of protein enrichment factors versus negative logarithmized p values as well as threshold lines for different interaction confidence classes.

(C) Cellular abundance plot showing the abundance of the bait in the HeLa proteome.

(D) Stoichiometry plot of interaction and abundance stoichiometries relative to the bait protein.

See also Data S1.
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Figure S6. Global Network Properties and Saturation, Related to Figure 6

(A) Preferential removal of strong interactions from the polymerase network causes roughly linear network shrinkage and no fragmentation.

(B) Protein co-expression correlation coefficients (Kim et al., 2014) as a function of interaction stoichiometries.

(C) Effect of the random or targeted removal of interactions on the total number of connected proteins (proteins with R 1 interactions).

(D) Effect on the average size of networks isolated from the largest network.

(E) Number of distinct interactors as a function of the number of BAC-GFP line analyzed. Solid lines represent the median of 100 trajectories in randomized order;

the scatter indicates the SD from bootstrapping with 100 repetitions. Dashed lines are projections based on a linear model n= nmax,ð1� e�bxc Þ that was fit to the

data in the range between cell lines #500 and #1330. The model predicts 6240 and 6420 proteins, respectively, to be coverable.

(F) Number of distinct interactions as a function of the number of BAC-GFP lines analyzed, with projections representing an analogous fit of an exponential model.

The model predicts 84,400 and 183,500 as the asymptotic numbers of distinct interactions that can be covered with the highest or with all confidence classes,

respectively.
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Supplemental Experimental Procedures 

Quantitative BAC-GFP interactomics 

All interaction experiments were performed using HeLa Kyoto cell lines transformed with bacterial 

artificial chromosome (BAC) transgenes, which were engineered to introduce an N- or C-terminal tag 

based on GFP and a functionalized linker sequence (Poser et al., 2008). Such tags are very versatile for 

both imaging and as affinity handle, and have been used successfully in many studies. While additional 

affinity tags and protease cleavage sequences are included in some of our tag variants, we exclusively 

used GFP for affinity enrichment. Differences between the individual tag sequences used are minimal, and 

mostly relate to additional functionality in the linker or terminal regions. Exact sequences are listed in 

Table S1 along with metadata and all information regarding our bait collection. 

Baits were selected based on availability from earlier studies (Hutchins et al., 2010; Maliga et al., 2013) 

and the availability of suitable BACs for tagging. We found that the overall collection is devoid of major 

compositional biases and therefore representative of the cellular proteome (Figure S1C). 

For interaction experiments, cells were grown to near-confluency on two 15 cm cell culture dishes per 

experiment. We harvested three replicates from separate dishes from at least two different culture 

passages. Cells were detached with accutase (PAA) to limit any unintended general protease activity 

caused by trypsin, washed and snap frozen. 

Pellets were lysed in mild lysis buffer and used as input material for affinity enrichment exactly as 

described previously (Hubner et al., 2010). In brief, 800 µl of lysate was mixed with magnetic beads pre-

coupled to anti-GFP antibodies and run over magnetic microcolumns (Miltenyi Biotec), washed, and 

subjected to in-column tryptic digestion. Eluates were collected and digestion continued overnight, 

followed by desalting and storage on StageTips (Ishihama et al., 2006). This was performed in batches of 

48 samples on a robotic platform. Replicates of each sample were processed in different batches. MS-

analyses were carried out batch-wise, in randomized order within batches, over the course of weeks to 

months for the replicates of individual samples, preventing any negative influence of column carryover or 

drifts in machine performance. The entire interaction dataset was recorded using the same dedicated 

HPLC and Orbitrap instrument. 

 

Label-free quantification and normalization (first dimension of quantification) 

MaxQuant’s MaxLFQ algorithm calculates a data matrix of label-free quantification (LFQ) intensities that 

allow the relative comparison of protein amounts across samples with high accuracy (Cox et al., 2014). 

Additionally, its absolute scaling reflects the summed peptide intensity of a protein or protein group, 
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which is a measure for the total protein mass. We use the ‘match between runs’ feature to transfer peptide 

identifications from MS/MS sequenced peaks to unidentified peaks of the exact same m/z eluting at the 

same point in the LC gradient in other runs. This leads to a high fraction of valid quantitative data in the 

data matrix and allows us to gauge the background binding profiles of many proteins. We imputed missing 

values with random noise simulating the detection limit of the mass spectrometer (Hubner et al., 2010; 

Eberl et al., 2013; Keilhauer et al., 2015). To this end, imputed values are taken from a log normal 

distribution with 0.25× the standard deviation of the measured, logarithmized values, down-shifted by 1.8 

standard deviations. In this way, we obtained a distribution of quantitative values for each protein across 

samples. These values represent unspecific binding to the affinity matrix or, in case of imputed values, a 

simulation of the detection limit of the mass spectrometer. 

Interactors are characterized by quantitative enrichment over a negative control, classically a ‘mock’ 

sample, for instance a cell line expressing a tag-only construct or the untagged parental cell line. We have 

shown recently that a cohort of unrelated, tagged cell lines serves as an even better control (Keilhauer et 

al., 2015). All samples could in principle be used as a control for each individual sample, but it is evident 

that it is beneficial to exclude related cell lines, such as those where members of the same complex are 

tagged. Usually, this requires some manual ‘flagging’ of samples (Jäger et al., 2012; Keilhauer et al., 

2015), which becomes impractical with scale. Therefore, we developed a method to exclude those cases in 

an automated fashion as follows: First, we calculated the median of replicate groups and then the median 

and interquartile range of the resulting medians. In an iterative fashion, we then removed the most extreme 

outlier. After that we recalculated the population characteristics. This was repeated until no outlier of more 

than 1.8 interquartile ranges existed or until 10 groups were removed. The remaining groups of replicates 

were defined as the control cohort. This procedure proved very effective in determining useful control 

cohorts without manual intervention, irrespective of the number of samples in the dataset. 

Median and standard deviations of the control cohorts represent a robust estimate of background binding 

behaviour of each protein. We used these values to normalize all quantitative values to represent 

enrichments in multiples of standard deviations. 

 

Statistical testing, outlier detection and FDR estimation 

The control cohort also serves as the reference group for significance testing by a two-sided Welch’s t test. 

By plotting the enrichment vs. the negative logarithmized p-values, we obtained “volcano plots”, whose 

name originates from the characteristic shape of the point cloud (Extended Data Fig. 1e). 

Most volcano plots have very comparable, narrow distributions of points, which is critical for a reliable 

determination of a cut-off. A small minority of samples, however, showed rather wide distributions of 

enrichment factors. We largely found these to be cases of bait proteins co-precipitating the ribosome or 
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cytoskeletal proteins, both of which contribute the bulk of the background binding protein mass in other 

pull-downs. In order to apply the same cut-off criteria without including false positives, we implemented a 

penalty factor that accounts for distortions in the background binding proteome due to specific enrichment 

of many background binding proteins. The penalty factor is defined in an unbiased way as the intensity-

weighted Pearson’s correlation coefficient of the averaged protein intensities in each replicate group and 

the control cohort median. This factor was further divided by the median across all factors and then 

squared, to be very close to 1.0 for most samples, and <1 in cases with very wide volcano plots. 

Subsequently, for each cell line, we scaled all enrichment factors by the specific penalty factor. These are 

listed in Supplementary Table 1. 

 

Outlier detection and FDR estimation 

Interactors appear in the upper right corner of the volcano plots and should be separated from the cloud of 

background binders. A critical parameter for any interaction detection method is the cut-off that separates 

significant hits from non-significant ones. Several approaches exist to define such a cut-off. Some studies 

used empirical cut-offs (Collins et al., 2013), while others model distributions of random data and 

determine the cut-off by the differences between real and simulated data (Sowa et al., 2009; Jäger et al., 

2012), or by comparison of literature-derived true positive and false-positive interactions in the dataset 

(Breitkreutz et al., 2010; Keilhauer et al., 2015). 

For volcano plots, cut-offs often involve a minimum fold change and a maximum p-value (Collins et al., 

2013). We recently described an approach that uses a graphical formula as a smooth combination of these 

(Keilhauer et al., 2015): 

− log10(𝑝)  ≥
𝑐

|𝑥|−𝑥0 
  

with 

x: enrichment factor of a protein 

p: p value of the t test, calculated from replicates 

x0: fixed minimum enrichment 

c: curvature parameter. 

The curvature parameter c determines the maximum acceptable p value for a given enrichment x. 

 

The parameters c and x0 can be optimized based on prior knowledge of known true and false positives 

(Keilhauer et al., 2015). 

In this study, we developed a novel approach that relies only on acquired data without the need for gold 

standards or simulated data. We make use of the fact that a volcano plot of enrichments vs. negative 

logarithmized p values typically shows a symmetric distribution of points with respect to the y axis. In our 
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case, this applies to the dominant cloud of background binders. However, there is a marked asymmetry in 

the outlier populations: while a large number of proteins appear significantly enriched, there were only 

sporadic cases of proteins apparently being depleted (Extended Data Fig. 1e). 

As such ‘negative binding’ is not expected to occur, this allowed us to define cut-off parameters based on 

a false discovery rate (FDR) estimation. The proteins beyond the left sided curve are outliers by chance. 

Therefore we interpret the fraction of left-sided outliers to total outliers as the FDR of calling a point 

specifically enriched. This concept is borrowed from the target-decoy estimation of peptide identification 

FDR (Elias and Gygi, 2007), where 1% and 5% are commonly used cut-offs. 

For each FDR, different combinations of c and x0 are possible, and we chose the combination that 

maximizes the number of right right-sided outliers: 1% FDR: c=3.65 and x0=1.75; 5% FDR: c=2.9 and 

x0=0.9) (Extended Data Fig. 1f). 

Interactions with <1% enrichment FDR were assigned to confidence class A, interactions with <5% and 

>1% to class B. 

 

Profile correlation 

Genuinely interacting proteins are often characterized by good correlation of their intensity profiles across 

samples. Protein correlation profiling is a well-established technique to find stable complexes and to 

assign proteins to subcellular structures (Andersen et al., 2003; Havugimana et al., 2012; Kristensen et al., 

2012). It usually requires extensive fractionation under non-denaturing conditions. In our case, many 

independent affinity purification experiments serve the same purpose if the proteins are quantified across 

many samples and we have recently described their use as additional determinants for gauging the 

significance of statistical outliers (Keilhauer et al., 2015). To this end, we calculate Pearson’s correlation 

coefficients for all candidate interactors. Replicate experiments in which both partners were never 

quantified (i.e. all values resulted from imputation) were excluded, as they do not contain signal. In the 

case where one but not the other was quantified, we considered the imputed values. We used the 

correlation coefficients of interacting proteins as a qualifier in addition to the FDR-controlled confidence 

classes. Correlation coefficients of 0.1 and 0.2, respectively, correspond to a slight and substantial 

deviation from the random normal distribution; therefore we chose these values as thresholds for the 

qualifiers “+” and “–” that we combined with the letters A and B indicating the confidence class. 

A small number of interactions showed very high correlation coefficients, in the range of 0.5, while not 

crossing any FDR threshold. We therefore established the additional confidence classes C and C+ for all 

interactions with bait enrichments more than two-fold and correlations >0.4 or >0.5, respectively. 
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Interaction stoichiometries and copy numbers (second/third dimension of quantification) 

Comparing the absolute amounts of different proteins by mass spectrometry is inherently more 

challenging than relative quantification of the same proteins across samples. This is because the peak 

intensities of different peptides depend not only on their amounts, but also on the ionization efficiencies of 

the peptide. Available methods therefore often employ isotopically labelled spike-in references of known 

quantities. Combining the known amount of the spike-in with relative quantification readout yields the 

stoichiometries of individual proteins in the sample. Clearly, labelled spike-ins are not practicable in a 

dataset of our scale, as this approach would require prior knowledge of which proteins are to be 

quantified. 

However, label-free approaches of absolute quantification are viable alternatives and provide useful 

estimates that can be used to gauge stoichiometries. Available methods seek to circumvent or normalize 

the different properties of individual peptides by taking only the sum of the top three ‘best flying’ peptides 

(Malmstrom et al., 2009) or dividing the summed intensities of all peptides by the size of the protein or the 

number of theoretical peptides (Schwanhäusser et al., 2011; Wisniewski et al., 2014). We normalized our 

LFQ intensities – label-free signals as extracted and calculated by the MaxQuant software’s MaxLFQ 

module (Cox et al., 2014) – by the number of theoretical tryptic peptides between 7 and 30 amino acids in 

length for any given protein, which is the approach taken in the iBAQ method (Schwanhäusser et al., 

2011). This allows the estimation of relative molar amounts of different proteins in a sample. 

To calculate interaction stoichiometries, we subtracted the background binding intensities (see section 1) 

to account for the amounts of the proteins bound unspecifically, before reporting the ratio of each prey 

normalized to the bait. A similar approach was recently validated and applied to a number of chromatin-

associated protein complexes, with a reported accuracy that allowed the estimation of how many copies of 

each subunit made up the complexes (Smits et al., 2012). 

 

In a similar fashion, one can estimate the relative abundances of proteins in whole proteome samples. By 

scaling these values to the total amount of protein per cell, we obtained copy numbers of each protein 

(Wisniewski et al., 2012; Wisniewski et al., 2014). Specifically, we set the sum of all copy numbers 

multiplied by the respective molar masses as equal to 200 pg in a cell volume of 1 pl. 

Conversely, a typical IP sample contains around 1-3 µg of peptides, so we set 1 µg or 25 pmol of an 

average protein as the equivalent of the typical cumulative intensity of all background binders and thereby 

estimated the absolute amount of each bait protein recovered after IP. 
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PAM-SILAC dynamic interactor exchange experiments 

Tagged and parental HeLa lines were metabolically labeled with 
13

C6
15

N4-arginine and 
13

C6
15

N2-lysine, or 

their light counterparts, for 2 weeks in media containing dialyzed serum. Cells were lysed using the 

standard lysis conditions. Heavy, tagged and light, untagged lysates (and vice versa) were mixed 1:1 to a 

total volume of 800 µl immediately before subjecting them to the standard affinity enrichment protocol. 

The incubation time for dynamic exchange was 15 minutes. Each cell line was analyzed with label-swap 

and in triplicate for each labeling state. Raw files were processed in MaxQuant with the ‘re-quantify’ 

feature activated and requiring 1 minimum ratio count. 

 

APC/C–KIAA1430 experiments 

For APC3 immunoprecipitations, HeLa Kyoto cell lines expressing KIAA1430-LAP were arrested in 

mitosis with 330 nM nocodazole (Sigma) using a double thymidine block and release protocol, 

immunoprecipitated using a specific antibody (clone AF3.1, gift from T. Hunt, CRUK, London, UK), 

followed by elution of bound proteins with 1 mg/ml of competing peptide, and western blot detection 

(Mansfeld et al., 2011). To analyze the effect of KIAA1430 depletion, cells were transfected with 70 nM 

esiRNA (Eupheria Biotech) and after 72 h treated with 0.5 M reversine (Biomol) as indicated and 

analyzed by time-lapse imaging. To monitor KIAA1430-LAP localization during the cell cycle iRFP was 

targeted into the histone 3.1 locus as described (Collin et al., 2013). KIAA1430-LAP stability and co-

localization with centrosomes was analyzed by time-lapse imaging and immunostaining against -tubulin 

(Sigma) and CEP135 (Abcam), respectively. 
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Supplemental Tables 

Table S4. Proteins co-enriched with GFP-tagged TRiC subunits. 

Related to Figure 5. 

Listed are all prey proteins that scored as interactors in at least two sets of TRiC pull-downs. Numeric 

values represent medians of all evidences. 

 

Prey Type 
Corre-
lation 

# of 
times 
found 

log10 
interaction 
stoichio-
metry 

log10 
abundance 
stoichio-
metry 

CCT2 

TRiC core 

0.754 6 0.173 0.176 
CCT6A 0.772 6 0.020 -0.135 

TCP1 0.682 6 0.011 0.154 

CCT5 0.789 6 -0.030 0.047 

CCT4 0.798 6 -0.083 0.000 

CCT3 0.744 6 -0.112 0.131 

CCT7 0.759 6 -0.207 -0.139 

CCT8 0.774 6 -0.225 -0.112 

PDCD5 

regulatory 
protein 

0.414 6 -1.606 -0.641 

TXNDC9 0.401 6 -1.683 -0.856 

PDCL3 0.472 6 -1.953 -0.987 

PDCL 0.357 6 -3.162 -2.098 

FAM203A/B 0.242 6 -3.727 -1.257 

PFDN1 co-
chaperon
e 

0.228 2 -3.879 -1.924 

PFDN2 0.378 2 -4.094 -1.120 

TUBB 

cyto-
skeleton 

0.408 4 -0.732 0.721 

TUBA1B 0.426 2 -1.177 0.658 

ACTR2 0.281 6 -2.067 -0.514 

ACTR1A 0.170 2 -2.256 -0.499 

ACTL8 0.124 4 -3.709 -2.157 

GNB2 

WD 
domain 
protein 

0.145 4 -2.904 -0.818 

EIF3I 0.236 4 -3.421 -0.412 

MLST8 0.303 4 -3.691 -1.954 

WDR92 0.375 5 -3.753 -1.531 

CSTF1 0.245 3 -3.866 -0.788 

WDR77 0.097 3 -4.119 -0.860 

RFWD3 0.299 2 -4.315 -2.766 

DTL 0.223 3 -4.578 -2.951 

RPTOR 0.206 2 -4.666 -2.764 

PPP6C phospha-
tases 

0.376 2 -3.052 -1.131 

IGBP1 0.236 2 -3.337 -1.412 

ESCO1 

other 

0.089 2 -2.843 -3.577 

CCDC47 0.055 2 -3.615 -1.004 

TNPO1 0.188 2 -4.683 -0.335 
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Table S5. Proteins co-enriching TRiC. Related to Figure 5. 

Listed are all bait proteins in whose pull-downs at least three TRiC core subunits were scored as 

interactors. Numeric values represent medians of all TRiC subunit values. 

 

Bait Type 
Corre-
lation 

# of 
TRiC 
sub-
units 

log10 
interaction 
stoichio-
metry 

log10 
abundance 
stoichio-
metry 

CCT7 

TRiC core 

0.788 8 0.243 0.166 

CCT4 0.720 8 -0.002 0.020 

CCT3 0.692 8 -0.005 -0.084 

CCT8 0.813 8 -0.025 0.142 

CCT4 0.790 8 -0.059 0.027 

CCT2 0.742 8 -0.149 -0.115 

TUBA3C/E 

cyto-
skeleton 

0.233 8 0.190 NA 

TUBA3C/E 0.226 8 -0.181 NA 

TUBG1 0.310 8 -0.609 0.836 

TUBG1 0.310 8 -0.733 0.836 

TUBG1 0.310 8 -0.873 0.836 

TUBG1 0.185 8 -0.934 0.855 

TUBA1C 0.371 8 -1.759 -0.577 

TUBE1 0.081 6 -2.193 2.121 

ACTR1B 0.099 7 -2.636 2.218 

TUBE1 0.096 3 -2.912 2.226 

ACTB 0.084 4 -3.585 -0.880 

ACTR2 0.285 8 -1.843 0.583 

PPP4C 

phospha-
tases 

0.173 8 0.074 1.275 
PPP2CB 0.280 8 -0.794 0.437 

PPP2CA 0.133 8 -0.822 0.315 

PPP2CA 0.182 8 -0.906 0.323 

PPP6C 0.362 8 -1.012 1.230 

IGBP1 0.274 8 -1.406 1.378 

WDR61 

WD 
domain 
protein 

0.103 8 1.085 0.675 

WDR48 0.106 8 0.010 1.414 

GNB1 0.244 8 -0.248 0.679 

RFWD3 0.155 8 -0.308 2.650 

NSMAF 0.194 8 -0.361 2.513 

DDB2 0.129 8 -0.866 1.552 

STRN3 0.258 8 -1.486 1.740 

DTL 0.103 8 -1.501 3.123 

STRN3 0.258 8 -1.522 1.740 

NEDD1 0.119 8 -1.930 2.142 

KIF21B 0.114 7 -2.090 2.929 

KIF21A 0.047 8 -2.109 1.566 

WRAP53 0.056 8 -2.156 1.717 

CDC20 0.203 7 -2.222 2.013 

STRN 0.322 8 -2.224 1.345 

PRPF4 0.138 8 -2.473 1.106 

SEH1L 0.107 4 -2.792 1.028 
NEDD1 0.413 8 -2.656 2.098 

NEDD1 0.413 8 -1.053 2.098 

BUB3 0.105 3 -3.766 1.026 

SAMM50 

other 

0.134 8 -0.401 1.288 

NIPSNAP1 0.136 8 -0.832 1.172 

PDK3 0.140 8 -1.022 2.989 

HDAC1 0.182 8 -1.276 0.614 

ARMC6 0.144 8 -1.647 1.622 

JAK3 0.103 4 -1.941 4.128 

XRCC3 -0.009 4 -2.331 3.967 

ILK 0.107 7 -2.636 1.545 

CDK1 0.219 4 -3.655 0.337 
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